GCE Physics A

Mark Scheme for January 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations

Annotation	Meaning
[Trom	Benefit of doubt given
Codo	Contradiction
3	Incorrect response
[-5]	Error carried forward
\square	Follow through
[DE]	Not answered question
Pie	Benefit of doubt not given
[10]	Power of 10 error
\square	Omission mark
[19]	Rounding error
\square	Error in number of significant figures
\checkmark	Correct response
\square	Arithmetic error
2	Wrong physics or equation

Abbreviations used in detailed mark scheme

Abbreviation	Meaning
\boldsymbol{I}	alternative and acceptable answers for the same marking point
$\mathbf{(1)}$	Separates marking points
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
$\mathbf{()}$	Words which are not essential to gain credit
ecf	Underlined words must be present in answer to score a mark
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

The following questions should be annotated with ticks to show where marks have been awarded in the body of the text.

Note about significant figures and rounding errors:

If the data given in a question is to 2 sf, then allow answers to 2 or more sf. If an answer is given to fewer than 2 sf, then penalise once only in the entire paper. Any exception to this rule will be mentioned in the Guidance.
Penalise a rounding error once only in the entire paper.

Question		Answer	Marks	Guidance	
$\mathbf{1}$		Lines joining density to ' $\mathrm{kg} \mathrm{m}^{-3,}$ pressure to $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2,}$ power to ' $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3,}$	B1×2	Note: All correct -2 marks, deduct 1 mark for each error or omission. (Minimum score $=0$)	
				Total	$\mathbf{2}$

Question			Answer	Marks	Guidance
2	(a)		Difference: Velocity / vector has direction (and speed does not) or speed / scalar does not have direction (velocity has) Similarity: Both have the same unit / both have $\mathrm{m} \mathrm{s}^{-1}$ (as the unit) / both have magnitudes	B1 B1	Not 'velocity is a vector / speed is a scalar' since it is stated in the question
	(b)	(i)	$\begin{aligned} & \text { distance }=2 \times \pi \times 0.60(=3.77 \mathrm{~m}) / \text { speed }=\frac{3.77}{12} \\ & \text { speed }=0.31\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Note: Answer to 3 sf is $0.314\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
		(ii)	$\begin{aligned} & s^{2}=0.60^{2}+0.60^{2} \\ & s=0.85(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Note: Answer to 3 sf is 0.849 (m) Note: 0.72 scores 1 mark (square root omitted)
		(iii)	The (change in) displacement is zero	B1	
		(iv)	The direction changes (even though the magnitude is the same)	B1	
			Total	8	

Question		Answer	Marks	Guidance
3	(a)	$\begin{aligned} & a=3600 / 1200 \\ & a=3.0\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$	B1	Allow 1 sf answer (Ignore sign)
	(b)	$\begin{aligned} & v^{2}=u^{2}+2 a s \\ & 0=18^{2}+(2 \times-3.0 \times s) \quad / \quad s=\frac{18^{2}}{6.0} \\ & s=54(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	```Possible ecf Allow ' \(v^{2}=2\) as, \(18^{2}=2 \times 3.0 \times s\) ' Allow other approaches, examples: \(t=6\) (s) \(=(18) \times 6.0)+1 / 2 \times(-3.0) \times 6.0^{2}\) \(s=(18 \times 6.0)+1 / 2 \times(-3.0) \times 6.0^{2}\) \(s=54(\mathrm{~m})\) Or \(1 / 2 m v^{2}=F s \quad\) C1 \(1 / 2 \times 1200 \times 18^{2}=3600 \times s \quad\) C1 \(\mathrm{s}=54(\mathrm{~m})\)```
	(c)	(The distance is) greater There is a component of the weight of the car acting down the slope / component of weight against the resistive force / reference to $W \sin \theta$ (AW) Net force is less / reference to $3600-W \sin \theta$ / (magnitude of) deceleration is smaller	B1 B1 B1	Allow the following for the last two B1 marks: - The same force has to do more work - Work done is the sum of initial kinetic energy and change in GPE (due to vertical downward movement)
	(d)	Reference to radio waves or microwaves (transmitted from satellites) There is a 'delay time' of signal from satellite to GPS device / car Distance (between satellite and GPS device / car) calculated using 'delay time $\times c^{\prime}$ Trilateration / intersecting shells / circles / spheres (used to locate position of car)	B1 B1 B1 B1	Use ticks on Scoris to show where the marks are awarded Allow: 'delay time' of signal between satellite and GPS device / car (Not from GPS device / car to satellite) \mathcal{Z} Trilateration / shell(s) / circle(s) / sphere(s) must be spelled correctly to gain the mark. Note: Allow full range of marks for other sensible alternative approaches
		Total	11	

Question			Answer	Marks	Guidance
4	(a)		acceleration $=$ rate of change of velocity (or acceleration = change in velocity $/$ time)	B1	Allow 'a $=(v-u) / t$ ' or $\Delta v / t$ if v, u and t or Δv and t are defined
(b)			Mass and (net) force	B1	
	(c)	(i)	1 acceleration 2 deceleration / negative acceleration Detail mark: Constant used in either 1 or 2 or reaches maximum height at 25 (s) or stops at 25 (s)	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Allow: velocity / speed increases Allow: velocity / speed decreases Allow: ‘uniform / same' for 'constant'
		(ii)	```height = area under graph from 0 to 25 (s) height = 1/2 }\times25\times20 height = 2500 (m)```	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow 1 mark for either 500 (m) or 2000 (m)
		(iii)	A sensible suggestion, for example: $v^{2}=2 \times g \times 2500, v=220\left(\mathrm{~m} \mathrm{~s}^{-1}\right)-\text { allow } g=10\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ - For $200\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ at ground, the (maximum) height would only be $2040(\mathrm{~m})$ (with $g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$) or $2000(\mathrm{~m})$ (with $g=10 \mathrm{~m} \mathrm{~s}^{-2}$) - (Burning) rocket fuel does work on the rocket (AW)	B1	
			Total	9	

Question			Answer	Marks	Guidance
5	(a)		Drag increases with speed (ORA) / drag \propto speed ${ }^{2}$	B1	
	(b)		Galileo dropped different mass balls / rolled different mass balls (down a ramp) Balls hit the ground / reached the bottom (of ramp) at the same time (Galileo -) All objects fall with the same acceleration and (Aristotle -) Heavy / massive objects fall faster / quicker (than light objects)	B1 B1 B1	Allow object / trolley instead of ball
	(c)	(i)	(The two forces are weight and drag) weight $=$ drag	B1	Not 'gravity' for weight Allow: weight = drag + upthrust
		(ii)	When the parachute is opened, drag increases / drag is greater than the weight Drag decreases as the speed decreases / net force decreases The (magnitude of the) deceleration decreases (between $50 \mathrm{~m} \mathrm{~s}^{-1}$ and $4 \mathrm{~m} \mathrm{~s}^{-1}$) (At $4 \mathrm{~m} \mathrm{~s}^{-1}$) deceleration or acceleration $=0$	B1 B1 B1 B1	
			Total	9	

Question			Answer	Marks	Guidance
6	(a)		work done $=$ force \times distance moved in the direction of force	B1	Allow: work done $=$ force \times displacement in direction of force
	(b)	(i)	$\begin{aligned} & \text { mass }=700 / 9.81 \text { or mass }=71.4(\mathrm{~kg}) \\ & \text { kinetic energy }=1 / 2 \times 71.4 \times 15^{2} \\ & \text { kinetic energy }=8.0 \times 10^{3}(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Note: Answer to 3 sf is $8.03 \times 10^{3}(\mathrm{~J})$ Note: $1 / 1 / 2 \times 700 \times 15^{2}=7.9 \times 10^{4,}$ scores zero Allow: 1 sf answer
		(ii)	$\begin{aligned} & \text { GPE }=m g h \\ & 700 \times 32 \quad / \quad 2.24 \times 10^{4}(\mathrm{~J}) \\ & \text { work done }=2.24 \times 10^{4}-8.03 \times 10^{3} \\ & \text { resistive force }=\frac{1.44 \times 10^{4}}{120} \\ & \text { resistive force }=120(\mathrm{~N}) \end{aligned}$	C1 C1 A1	Possible ecf Note: Dividing the work done by 32 (m) gives 450 (N). This answer scores 2 marks.
			Total	6	

Question		Answer	Marks	Guidance
7	(a)	Object moves into region $\underline{3}$ (net) force to left / $1(\mathrm{~N})$ to the left / $8(\mathrm{~N})>7(\mathrm{~N})$ and (net) force down / $2(\mathrm{~N})$ down / $12(\mathrm{~N})>10(\mathrm{~N})$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow use of labelled arrows, e.g $\downarrow 2$ (N)
	(b)	(When an object is in equilibrium the) sum of clockwise moments (about a point) = sum of anticlockwise moments (about the same point)	B1	Allow: summation sign Σ
	(c)	$\begin{aligned} & 50 \times 46=\text { weight } \times 14 \\ & \text { weight }=164(\mathrm{~N}) \\ & \text { mass }=164 / 9.81 \\ & \text { mass }=16.7(\mathrm{~kg}) \text { or } 17(\mathrm{~kg}) \end{aligned}$	C1 C1 A1	Possible ecf for weight calculated. Note: Using ' $50 \times 46=$ weight $\times 32$ ' gives an incorrect weight of $71.9(\mathrm{~N})$. However, 1 mark can be scored through ecf for a mass of $7.3(\mathrm{~kg})$ Allow: 3 marks for 'weight $=160 \mathrm{~N}$, mass $=16.3 \mathrm{~kg}$ or 16 kg '
		Total	6	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

